Nephrocalcinosis means kidneys contain many calcium deposits. You can see them on CT scans or during surgery to remove stones. This article tells about where in kidneys the deposits reside, what they mean, and what significance we need to attach to the word.

Fuller Albright Made Up the Word Nephrocalcinosis

The boyish face of perhaps the greatest 20th century scientist concerned with kidney stones, Fuller Albright, fills the featured picture. In 1934, Albright, then an Assistant Physician at the MGH and an instructor in medicine at Harvard Medical School, used his newly coined word, nephrocalcinosis in a remarkable paper.  That paper described calcium deposits in kidneys of patients with hyperparathyroidism – a mineral disorder caused by enlargement of one or more parathyroid glands.

Who Were His Patients?

He described three types of kidney involvement in primary hyperparathyroidism. Whereas type 1 patients simply formed kidney stones, type 3 patients suffered from acute ‘parathyroid poisoning’, with kidney failure and death. Midway between these two, type 2 patients had stones and kidney tissue calcium deposits but adequate kidney function.

About these Type 2 patients he wrote this passage in which the word first appears (In text box below).

First use of nephrocalcinosisWhat Limitations Did His Patients Impose on His Understanding?    

All of his patients suffered from primary hyperparathyroidism, a disease found in only 5% or so of calcium stone formers we see today in our clinics.

Moreover, the tissues he observed came from autopsies, meaning from only his type 2 and 3 patients. His Type 1 patients, who simply formed kidney stones, rarely came to autopsy, so he did not have tissues from them.

As a result Albright coined the word nephrocalcinosis to describe the scarred, contracted kidneys of patients whose primary hyperparathyroidism had caused kidney disease. Their kidney calcifications were a mixture of those from stone formation and those that occur with kidney failure.

Who Are Our Patients?

Like Albright, some have primary hyperparathyroidism. But none have significant kidney failure. They resemble his Type l patients.

Unlike the patients for whom Albright coined nephrocalcinosis, we mainly study patients whose stones arise from no systemic disease at all. They just form stones we ascribe to excessive amounts of daily calcium or oxalate excretion, or low urine volume or citrate, or to combinations of these – so called idiopathic calcium stone formers.

So physicians today use the word nephrocalcinosis to describe very different patients than those Albright studied when he made the word up.

Who Uses the Word Nephrocalcinosis?


They mean many calcified – radio dense – regions overlay the outlines of the kidneys on various kinds of imaging studies: Simple flat plates, ultrasound studies, and CT scans.

But, as in the Cave of Shadows, radiographs are to the reality of tissue as shadows to real objects.

Many Others

When I looked up nephrocalcinosis in PubMed, I found 2686 entries.

Of these, most concerned diseases that calcify kidney tissues: Medullary sponge kidney, kidney transplant, distal renal tubular acidosis, primary hyperparathyroidism, inherited disorders of the kidney, hyperoxaluria, loop diuretics in neonates, vitamin D and A toxicity, FAM20A mutations – enamel renal syndrome -, claudins, hypomagnesemic states, and hypophosphatasia.

As well, I found an excellent review from which this this article takes its starting point: ‘What is Nephrocalcinosis?’ by professors Shavit, Jaeger, and Unwin.

That review begins with a definition: ‘Strictly, the term ‘nephrocalcinosis’ refers to the generalized deposition of calcium oxalate (CaOx) or calcium phosphate (CaPi) in the kidney.’

But where do they form in kidneys, and what do they signify?

Where Kidney Crystals Form

Cortex, Medulla, and Papilla


This stock web drawing depicts a slice through a kidney. The outer capsule runs along the top.

The cortex occupies the upper 1/3 of the kidney slice, above the crescent of red and blue vessels. In it are the filtering units that begin the nephron, the glomerulae, shown as round balls.

Below that crescent of vessels lies the medulla.

At the very bottom of the medulla lies the rounded papillum where urine drains into the renal pelvis and thence down the ureter. Urine exits through the terminal collecting ducts of Bellini – the opening of the thick long tube that runs vertically from cortex to the bottom.


Each contains a tuft of capillary held within a complex web of cells. The force of the heart filters water and salts out of the capillaries into the tubule of the nephrons. Normal human kidneys contain about one million nephron units. Common measurements of ‘kidney function’ such as serum creatinine reflect the sum total of filtration through all  two million glomerulae. Obstruction from stones can reduce filtration.

Nephron Segments

Proximal Convoluted tubules

Each glomerulus drains its filtrate into a squiggly – convoluted – ‘proximal’ tubule which gives way into the remaining nephron. These tubules reabsorb much of the filtered water and salt back into the blood. They leave behind materials destined for export into the final urine.

Proximal Straight Tubules

Mislabeled thick descending limbs on the drawing, a part of the proximal tubule extends below the arc of vessels into the medulla and is called the S3 segment. I mention it only because crystals form there sometimes.

Loops of Henle

As they travels downward below the proximal convoluted tubule each nephron thins into a hairpin shaped loop. Those hairpin loops of glomerulae that lie near the outside of the kidney (look at the nephron to the left) reach down only part ways into the medulla – the portion of the kidney below the red crescent of vessels. By contrast, loops from glomerulae near the medulla – just above the crescent of vessels – reach down into the deepest parts of the medulla.

These hairpin loops permit kidneys to concentrate the urine, which means extracting water from the filtrate and putting that water back into the blood. Unlike the proximal convoluted tubules that reabsorb water and salts back into the blood the loops permit reabsorption of water without the salts, so the salts destined for export are concentrated.

Names for the Segments of the Loops

As already mentioned, the ‘Thick Descending Limb‘ is actually the S3 segment of the proximal tubule.

It gives way to the descending and ascending thin limbs of the hairpin. The top of the thin ascending limb widens into the ascending thick limb. This segment reabsorbs sodium chloride back into the blood without water, leaving the ‘extra’ water – without its sodium – as a diluted fluid in its lumen. The sodium chloride collects in the medulla around these thick limbs which becomes saltier than blood.

So called Randall’s plaque, over which calcium oxalate stones may form, originates in the outer parts of the thin limbs,

Distal Convoluted Tubule

The dilute fluid drains into the ‘Distal’ convoluted tubule’. Here, the ‘extra’ water leaves, back into the blood. This segment can make the fluid more acidic, and remove calcium back into the blood.

Collecting Ducts

From there, fluid drains through the unmarked straight connecting segment and thence into the collecting ducts. Like any plumbing drains, these run from the cortex down the medulla all the way to the papilla where the final urine flows out. Along the collecting duct the ‘salty’ interstitium around the thick ascending limbs draws water – but not calcium or phosphate or oxalate back into the blood, supersaturating the fluid that remains in the tubule. Collecting duct cells make the fluid more acid, a protection against calcium phosphate crystals.

We name the portion of the collecting ducts that run alongside the medullary thick ascending limbs the outer, and the remainder the inner medullary collecting ducts.

Ducts of Bellini 

These terminate the nephron and empty the final urine into the urinary collecting system through tiny holes in the lining of the papillary tip. Because they hold the final, most supersaturated urine, crystals often form in them, creating plugs over which stones form.

Where is the Interstitium?

Envision a tall building. Pipes run from the basement to the roof – water, steam, drains, electrical conduits, elevator shafts, stairwells. Now, think about the space between the elevator shafts, stairwells, and all the pipes and conduits: That is the interstitium, what stands between.

In the kidney the long structures are the tubules and vessels; the interstitium is the space between them. That is where plaque is. There are cells in the interstitium – it is as though, as an example, insulation blocks were stuffed into the spaces between pipes.

Mice can live in the spaces between things, but not in the pipes. Rust can plug pipes but not the spaces between them.

The Reward for Brave Hearts

To those who have read the foregoing: My regards and admiration. Like tourists who climb the ancient, winding, broken stairs up into the towers of medieval cathedrals or the battlements of long abandoned castles, panting and worried about getting back down, you now come into the reward of so much virtue and endurance. Before you lies the architecture of the nephron.

Where the Crystals Form

From what I have told you, where would you surmise crystals might form?

Surely not, you might say, in the glomerulae or proximal tubules, or in the thick ascending limbs with their excess of water. The distal tubules, perhaps, as they extract water, but – you might think – it is only the extra water.

Ah! That vast long drain, where water extraction supersaturates urine – there would crystals form.

And, those uncanny thin limbs, so deep into the medulla.

You are right.

Who Sees Them?

When radiologists spy calcium deposits in kidneys so numerous they name them nephrocalcinosis, the deposits lie – with rare exceptions – in the medulla, the papillum. Surgeons can see them in the collecting ducts and interstitium. For pathologists they lie in the thin limbs, the collecting ducts, and the interstitium – the space between the ducts.

Crystal Deposits in the Cortex

These occur in rare stone diseases. I list them for completeness only.


In humans, high blood calcium can produce glomerular crystals. Hyperparathyroidism for example, when severe.

Shall I mention  intravenous dibasic phosphate in rats, Vitamin D intoxication in suckling ratscalcifications of large immune deposits? No; I demur. Not relevant to humans.

Proximal tubules

We have found calcium oxalate crystals in the proximal tubule S3 segment in primary hyperoxaluria. 2,8 dihydroxyadanine crystals due to APRT deficiency can plug proximal tubules. In transplanted kidneys we have seen scattered birefringent crystals presumably calcium oxalate.

In other words, common stone formers have no proximal tubule calcifications, only patients with rare diseases.

Distal Convoluted Tubules and Cortical Collecting ducts.

Acute phosphate nephropathy from bowel preparation is well known. Distal convoluted tubules contain calcium phosphate deposits in cystine and primary hyperparathyroid patients,and calcium oxalate in primary hyperoxaluria stone formers. In transplanted kidneys tubule and interstitial deposits are found not rarely and are said to be calcium phosphate. In primary hyperparathyroidism with stones, and ileostomy patients, deposits were found in the cortical collecting ducts.

This means, here and there, uncommonly, scattered deposits can lie in the cortex.

Cortical Interstitium

When kidneys fail and blood accumulates excesses of salts and molecules kidneys normally eliminate, crystals form in the space between tubules, the interstitium because blood itself supersaturates. The same for primary hyperoxaluria: so much oxalate is produced it can accumulate in blood and crystallize in the interstitium.

Cortical Blood Vessels?

We believe it is potentially confusing to lump vascular disease and its associated calcifications together with calcifications within the renal tubules and interstitium.

Crystal Deposits in the Medulla and Papilla – Work by Us

Our reports comprises the bulk of human kidney tissue work to date.

Thick ascending limbs

No deposits have been found in any stone formers to date.

Thin Loops of Henle

We have found rare hydroxyapatite deposits plugging thin limbs in ileostomy, cystinuria and primary hyperoxaluria patients with reduced renal function. These are best illustrated in Figure 4 of the ileostomy reference. As I have mentioned, plaque begins in the outer shells of the thin limbs.

Outer Medullary Collecting Ducts

Patients with primary hyperparathyroidism are the only stone formers who show deposits (calcium phosphate) plugging this tubular segment.

Inner Medullary Collecting Ducts

Here is the main place for crystal formation. Are you surprised? The tubule contains supersaturated fluid progressively approximating urine itself. No wonder of it: crystals from where supersaturation is.

Hydroxyapatite crystal plugs

Crystal intraluminal plugs have been found in all eleven stone forming phenotypes examined. The majority of these plugs are composed of hydroxyapatite. Note the link goes to an article on this site which lists 10 phenotypes; ICSF, the 11th phenotype, did not reveal collecting duct deposits in our work but deposits of HA were found in cases of ICSF reported by Wang et al

Calcium oxalate crystal plugs

Obesity bypass surgery, distal renal tubular acidosis, small bowel resection, and medullary sponge kidney stone patients form calcium oxalate deposits.

Mixture of sodium acid urate and ammonium acid urate was admixed with biological apatite in ileostomy stone formers.

The Odd Microliths of MSK

Microliths, myriads of extremely small, round, non-adherent stones have been found only in the dilated IMCD of MSK patients. These differ from plugs in virtually all respects. Plugs adhere to IMCD lining cells and cause cell damage, and death, MSK microliths do not adhere nor cause any perceptible damage. Microliths are round, not cylindrical, and made up of concentric layers of crystal; plugs also have layers but much less regular.

Cystine Plugs

Cystine plugs also differ from all other plugs in not adhering to tubule cells. They move freely and do not appear to damage the cells.

Ducts of Bellini

We have found Bellini duct crystal plugs in all stone forming phenotypes.

This is expected as these ducts contain the final urine.

Bellini duct plugs may attract overgrowths at their distal ends that protrude through a dilated opening of the duct into the flowing final urine. These proto stones may well grow to clinically significant size. Growth on plugs is one pathway for stone production.


To date, all interstitial deposits found in human kidneys have been hydroxyapatite ‘Randall’s’ plaque. Growth of stones over plaque is another pathway for stone production.

What About Blood Vessels?

No evidence exists showing calcium deposits within the vasa recta within the medulla or papilla. Deposits of hydroxyapatite can be found within and involving capillaries, but this is not evidence of a primary calcification. Theoretical papers proposing vascular injury and calcification as causes of plaque have failed to advance direct evidence in support of the theory.

Crystal Deposits in the Medulla and Papilla – Work by Others

Idiopathic calcium oxalate stone formers

Idiopathic calcium oxalate stone formers display variable amounts of interstitial plaque. Those with hypercalciuria had the heavier plaque deposits, much as we have found. Unlike our work, many patients had crystal plugs in Bellini ducts. Wang et al described much the same.

In biopsy tissue from 15 patients with ‘idiopathic calcium stones’ not otherwise characterized, Khan et al found Large areas of interstitial plaque. Crystals were HA. No plugging was found. Stones were calcium oxalate. The main finding was intimate association of plaque with collagen, as we have also described.

Mixtures of stone formers

Linnes et al studied ICSF, ICSF with malabsorption, phosphate stone formers which included struvite stones, and, also, uric acid stone formers. In 99% of patients they found interstitial plaque with an average low abundance. It was only when they separated out hypercalciuric ICSF that they found high plaque abundances as we have. They found plugging in all stone phenotypes. The patients were mostly female, and hypercalciuria was not impressive. They did not analyse the crystals in the plugs.

Single case report

Report of a single case describes interstitial plaque deposits identical to those we have described. The patient had large calcium oxalate staghorn stones. By EDX analysis the interstitial deposits were calcium phosphate. Tubule plugs were found in the medullary collecting ducts and these were calcium oxalate. We suspect this patient had primary hyperoxaluria.

Putting it All Together

Overall, these and our papers more or less agree. Stone former kidneys contain interstitial calcium phosphate deposits and plugs in Bellini duct and inner medullary collecting ducts. Only we and Khan have described the crystals in plugs to date. So, when we speak of multiple crystal deposits in the kidneys of stone formers, or nephrocalcinosis, we all seem to mean plaque and plugs. MSK differs altogether, because dilated ducts contain myriads of calcium oxalate microliths.

Virtually all Stone Formers Manifest Nephrocalcinosis

Virtually all Stone Formers Form Kidney Crystal Deposits

Shavit, Jaeger, and Unwin concur with Albright: ‘Strictly, the term ‘nephrocalcinosis’ refers to the generalized deposition of calcium oxalate (CaOx) or calcium phosphate (CaPi) in the kidney.’ Since virtually all stone formers deposit crystals in their kidney tissues, virtually all have nephrocalcinosis.

The Kinds of Deposits Number Three

One kind is plaque – calcium phosphate as hydroxyapatite – in the interstitium.

The second kind is plugging of the lumens of the various tubule segments, mainly the medullary and papillary collecting ducts. These plugs are usually calcium phosphate but can be calcium oxalate, cystine, or uric acid salts.

Of the three, the microliths of MSK, unique to this one disease, make up the third.

The Word Means Plaque and Plugs, or MSK

In any one patient nephrocalcinosis means interstitial calcium phosphate crystals, tubule crystal plugs of diverse kinds, or both, and microliths in the dilated tubules of MSK.

Because of this specificity, I propose we restrict the word to this exact meaning: Calcifications within kidney tissues as demonstrated directly in the tissues themselves.

Radiographic Nephrocalcinosis

Because tissue calcifications and stones both brighten the confining shadows of the radiologist with similar points of light but stones do, also. Therefore, we propose the term ‘radiographic nephrocalcinosis’ define what radiologists report. I say this because radiological means cannot always distinguish masses of tissue plugs or of microliths in MSK from stones.


Because they visualize stones, plaque, and plugging, and also the odd contours of MSK, surgeons can not only specify nephrocalcinosis but the type of calcium deposit. Therefore, they mean by nephrocalcinosis what pathologists mean. The only difference between them is in resolution. One has a microscope, the other simply an external view of the kidneys at modest magnification.

Meaning of Nephrocalcinosis

Since all stone forming patients deposit calcium in their kidney tissues, it signifies a quantitative vs. a qualitative distinction. Unlike other patients, those with nephrocalcinosis have more tissue calcium deposits and therefore, perhaps, what one might call more disease burden.

By disease burden I mean the tissues carry more crystals in them, and therefore a greater hazard from whatever evil it is that crystals might do.

One such evil: lodgment for new stones to form on. Because stones form on plaque and the ends of plugs, more plaque and more plugs implies a greater stone production potential. Although evidence for such potential must come, eventually, from prospective observations greater tissue mineral burden seems a proper spur to greater treatment effort even now. Such greater treatment efforts mean perhaps more emphasis to patients about diet and fluid change, and earlier use of medications.

Another is tissue damage. For example, crystal plugs cause obvious tubule cell loss and inflammation in the surrounding interstitium. Although papillary, plugging may affect the cortex. Compared to patients without plugging, those with plugging have more cortical interstitial scarring that treatment might benefit. Such treatment, as opposed to stone prevention alone, would specially emphasize reduction of calcium phosphate supersaturation.

Like many stones, nephrocalcinosis quantifies stone diseases. But in a new dimension, one that complements those already in use. Because complementary, the word adds specific value, provided we use it carefully.

210 Responses to “NEPHROCALCINOSIS”

  1. Gina

    I was diagnosed with Nephrocalconosis a few years back and have never had any stones. My last 24 hour urine showed I had very high urine calcium and phosphorus and high oxalates in my urine. My blood work was normal. My nephrologist said to lower my calcium intake which didn’t seem right to me, so I started following the kidney stone prevention diet with Jill and will repeat my labs next week. My question for you is do you know any ways to lower urine phosphorus? Also is there a test i can ask my nephrologist to order in order to figure out what caused my nephrocalcinosis so I can make sure it doesn’t get worse? My last sonogram said possible MSK. I was in the process of looking for a new nephrologist when everything was shut down so I can get some answers and make sure I’m doing the right things to stop the progression of my CKD. I’m currently stage 2. Do you have any recommendations for a nephrologist on Long Island, NY? I live in Suffolk County.
    Thank you for your time,

    • Fredric L Coe, MD

      Hi Gina, Dr David Goldfarb, NYU, is outstanding at stone prevention. I would use him when the virus is lessened. Urine phosphate is entirely dietary, so it it is high you are eating a lot of it. Common sources are beverages like diet drinks. The NC can have so many causes! I always look to the blood and 24 hour testing for answers, as you have been doing with Jill. Regards, Fred Coe

      • Christine Pecorello

        Is there a more specific article regarding medullary nephrocalinosis in a transplanted kidney?

        • Fredric L Coe, MD

          Hi Christine, I have not written such an article, because I have not seen this phenomenon. I will bring your question to Dr Michelle Josephson, who directs our medical transplantation group and ask her if she has information. Thanks for the question, and I hope to get you an better answer. I have sent her an email and asked her to write to you directly. Regards, Fred Coe

  2. Chrissie Johnson

    Hello, Dr. Coe. First and foremost, thank you so much for your work. You strive to make this complicated subject more understandable for people like me, and I couldn’t be more grateful. I was diagnosed in 2017 with bilateral medullary sponge kidney with bilateral nephrocalcinosis, although I am unsure what the nephrocalcinosis part means for me after reading your article. I’m seriously considering talking with my urologist about the possibility of having my kidneys “cleaned out” after my baby is born this summer. I know the benefits will likely only last for maybe a few years, but I’m desperate to give my family (and myself) some sort of respite from these monsters that are taking over my kidneys. According to my nephrologist, my kidney function is good, which is my primary concern with the possibility of a clean-out. I don’t want to do anything that could cause damage and/or decreased function. What are some things I need to consider and research while deciding if this is the best course of action for me? Do you have any other advice that could help?

    • Fredric L Coe, MD

      Hi Chrissie, I do have some thoughts for you. Given lots of stones, you need to know why. If they are all calcium oxalate it might be MSK, if they are mostly calcium phosphate is probably not MSK. What about your serum and 24 hour urine testing. I would start with this article. It gives a lot of ideas for how to proceed. As for surgery, not a good idea until you know why you make stones and are doing something to prevent them. Otherwise, more may well form. Regards, Fred Coe

      • Chrissie Johnson

        Thank you. Also, is there a particular article that should be linked in your above comment, or were you referring back to this article again? I want to be sure I’m understanding you.

        • Fredric L Coe, MD

          I see your other question and will try to be helpful there. Fred

  3. Pft

    A recent US mentions numerous tiny calcifications in left kidney, the right kidney being removed in nephrectomy . An MRI 4 months earlier mentioned numerous tiny renal cysts. Could they be referring to the same thing?

    A CT scan and US performed 4 months before MRI reported a 7mm stone in left kidney that seems to have disappeared in subsequent scans. During this period eGFR has went from 41 to 31, and I do have confirmed glomurosclerosis based on pathology report on right kidney. Obviously progressive CKD may contribute to these findings.

    Any ideas would be appreciated. Thanks .

    • Fredric L Coe

      Hi Pft, The CT scans are very reliable, so the stone was probably a stone. Cysts are not uncommon in CKD. I am not sure why your eGFR should fall so much and I hope your physicians are attending to possible causes. Given a stone and CKD, perhaps they might want to get a single kidney stone 24 hour urine to be sure about urine oxalate. Best, Fred Coe

  4. graham ingram

    hello I have just passed a 3mm stone from left kidney but during ct scan for this doctor noticed a 28mm x 16mm calcification on my right kidney I am worried

  5. dennis bouwell

    1 have had kidney stones now for over 38 years, been to the emergency room well over 20 times for stubborn stones,and had to pass them with very little help of pain killers, finally at age 52 i had surgery through my back to have multiple stones from my right kidney removed ,after about 2 weeks i had no more blood or sand from my kidney,,O K, 3 years later pow it hit me in my right kidney again , for the next 2 years i have several eppisodes of emergency room visits and passing stones,,57 year old now,bam emergency room again,this time i have a 9 mm stone blocking my urine so i get a stent and a surgery date 3 months away during this time BAM!!! my left side is so bad hurting i forgot about my right kidney to the emergency room i go,,diagnosis, multiple stones in my right and left kidney,on top of the stent and 9mm stone,the perticular stone in my left kidney is to big to pass 5mm so i get another stent,i now have 2 stents and thank God for them because the ferocious pain has eased, now 58 i have surgery or proceedure through the lower you know? during surgery i go septic and almost die from the infection,however the stones were removed and i recover stents, remain for a while 12 days i believe,time to remove them,this time i was awake and was able to see the removal procedure ,one stent removed,i can not recall which one,into the second kidney,guess what?,yes another or a missed stone was there,i got to see them remove it with a little basket or looked like an egg beater,any ways they trapped the small stone in it and removed it and then removed the stone,after recovery and a few months later i go and have a 24 hour urine test,several months later i get the results and they sy i have Hypocitraturia, and Nephrocalcinosis,and are put back on calcium citrate as i forgot to say i had taken it a couple years before the 9 mm stone was found,,i am wondering and hoping maybe you can shed a little light on this almost life long kidney stone adventure,I am 59 in december,and so far have had no more stones,i feel like i am gonna get another Bam! again,, and really dont have much faith in the potassium citrite as i had taken it like i said a couple years before my last surgery,and now this Hypocitraturia,Nephrocalcinosis,,really has me worried,thank you dr.coe,,dennis bouwell

    • Fredric L Coe

      Hi Dennis, It appears that your prevention program has failed indeed. You have had repeated surgeries. Better prevention is essential. I suggest you speak with your physicians about referral to a specialized kidney stone center in hopes of a more perfect prevention program. If you wish to tell me where you live perhaps I can suggest a specific place for you. Regards, Fred Coe

  6. Jen Bordenick

    Hi Dr Coe,
    I was diagnosed with MSK about 20 years ago. I am now 49. For the first 10 years, I suffered from UTIs and blood in urine, and an occasional small stone ever couple years. Over the last 4 years, I have had two hospitalizations to remove stones, passed a couple stones, and nephrocalcinosis revealed through CT. I take Potassium Citrate and stay hydrated. I have a great doctor. But I am interested in what I have to look forward to. Does MSK generally start accelerating-should I expect more frequent episodes? Should I be concerned about filtration rates? It’s frustrating, it seems not much has changed and there has been so little research about MSK prognosis and treatment in 20 years. It’s hard to get a sense of what other patients deal with over the long term, and what I have to look forward to.

  7. connie

    Is it possible to have nephrocalcinosis without calcium or raised PTH levels in the blood? if so, what causes this? I am just waiting for my blood work to come back but my ultrasound showed nephrocalcinosis in both kidneys and my symptoms appear to be similar to those for hyperparathyroid disease (fatigue, bone pain, blood in urine, back pain and frequent urination). Thank you so much for your response.

  8. Kimberly brereton

    I am a 30 year old woman and ha e had many UTIs and have suffered kidney infections after my pregnancies. I have been suffering from pain in my stomach on my right side. I had an xray the showed kidney stones and a ct without dye that showed excessive stones. On ultrasound I was told it was worrisome nephrocalcinosis. My calcium on my blood test was normal. Is it possible this could just be from the stones and easy to get rid of?

  9. Joyce

    Hello, Dr. Coe,

    I had onset of many calcium phosphate stones brought on by a high protein diet and low citrate.

    I’m an Ultrasound Tech and saw this rapidly occur in one kidney over just 5 months.

    After stopping the diet, I continued to have phosphate crystals in my urine for several months.

    I was prescribed Potassium Citrate and everything looked good. Dr advised that I could probably stop it because my water intake was so good, I was doing low sodium diet, and my pH was 7.3 with the potassium citrate.

    With potassium citrate treatment, my SS Ca P was only 0.46. My citrate was 482.

    Now it’s been over a year since ceasing treatment and my other kidney is now full of visible nephrocalcinisos as well.

    I’m worried about kidney damage. I’m 32, normal weight, active, and otherwise healthy except for Hashimotos (which has been treated with levothhroxine since age 15).

    The doctor can’t see me for two more months. In the meantime, what can I do?

    How would you treat a patient for this?

    • Fredric L Coe

      Hi Joyce, I would want serum and 24 hour urine testing to find out how you form your crystals. I would not want to wait very long, either. If you are forming lots of stones, supersaturations for those crystals are above 1, for sure, and you need to know why. Regards, Fred Coe

      • Joyce Feldpausch

        Thank you very much, Dr. Coe. I was able to get this 24 h urine ordered, even though I cannot be seen until July. I have not been on Potassium Citrate for over a year. As you said, likely one of my SS will be over 1. As you can see, my SS Calcium Oxalate is over 1. However, my pH is very high. My Citrate is lower than it’s ever been. Would you still recommend Potassium Citrate?

        Also to note, I notice that my pH is very high, my Ammonium very low (lowest of the range, and the lowest it’s ever been, even though I am not on Potassium Citrate- which I know decreases it) , and my Potassium is 87. I have noticed comparatively to my other previous 24 h urines, that my Urine Ammonium is lower and Urine Potassium higher. Do you think I have some sort of RTA? Or is Citrate usually much lower with RTA? My Comprehensive Metabolic Panels have been normal to date, but I’m wondering if I need to have another done.

        I am 32 years old, my GFR is 78 (lower than it’s ever been) and I’m motivated to get this ironed out, and really trust your advice.

        Do you know of any connection between low stomach acid and low urine citrate? I have Hashimotos and I know low stomach acid goes along with this. I’m wondering if taking Betaine with Pepsin would be helpful for me, or if it could potentially be harmful.

        THANK YOU!!

        My Recent 24 h Urine Results:

        Urine Volume l/d: l/d: 0.5 – 4 L———————————————————–My level: 4.47 L
        Supersaturation CaOx 6 – 10————————————————————–My level: 1.52
        Urine Calcium mg/d; male <250, female 450, female >550—————————————My level: 270
        Supersaturation CaP 0.5 – 2—————————————————————My level: 0.49
        24 Hour Urine pH 5.8 – 6.2—————————————————————–My level: 7.176
        Supersaturation Uric Acid 0 – 1————————————————————My level: 0.02
        Urine Uric Acid g/day: male <0.800, female < 0.750—————————–My level: 0.521

        Stone Risk Factors / Cystine Screening:
        Ammonium (normal 15-60)——————————————–My level: 15
        Sodium (normal 50-150) ———————————————–My level: 150
        Potassium (normal 20-100)——————————————–My level: 87

        • Fredric L Coe

          Hi Joyce, I know your stones are calcium phosphate and see that despite a very high urine pH and high urine calcium your CaP SS is below 1, and your CaOx SS trivial at 1.5. What saves you from the hypercalciuria is the very high urine volume, but given so many stones I would not trust it for prevention. Your urine sodium is 150 mEq/d and if you lowered it to 65 mEq/d (1500 mg Na) you might lower urine urine calcium quite a way. The low ammonia probably reflects your diet which may be low in diet acids – not your main problem. The high urine potassium also reflects diet, perhaps lots of veggies and fruits. I would suggest to your physician a repeat 24 hour urine on a much lower sodium diet, and if that is not enough a low dose of chlorthalidone 12.5 mg/d added to the diet all aimed to lower the urine calcium. Diet calcium needs to be high – you have a skeleton. This article details the diet and use of thiazide. Of course your physicians are the ones responsible for your care, and I am far away and certainly ignorant of details, so we have to rely on them. Regards, Fred Coe

          • Joyce

            Thanks, Dr. Coe. Your info is so helpful, in addition to my doctor of course. I really respect and appreciate your compilation of information & research. I definitely need to increase my diet calcium.

            We are re-checking my 24 h urine in 3 months. In your opinion, what would the goal be for my urine calcium?

            I would like to have your opinion so I can ask about the thiazide if I can’t meet the goal with diet alone.

  10. Sandy Kalkanis

    Hello Dr
    I had a kidney stone(oxalat) lodged in my ureter in 2003, something I will never forget. In the years to follow I believe I have passed either a tiny stone or crystals all during emergency room visits. I also had and have at present high calcium 305 in my 24 hour urine test. My dr gave me thiazides diuretic ( moduretic ) but that eventually caused such a bad skin reaction from the sun I stopped it.
    I am currently getting some stabbing sensations not to bad and I think I need to do a follow up, I am so afraid of any future kidney damage.
    I am 58 female and otherwise in good heath. I do however have very high colesterol and sludge in my gallbladder ( diagnosed through Ct scan last year)
    Any suggestions regarding the diuretics???? My calcium in blood is fine as is creatine
    I was given

    • Frederic L Coe

      Hi Sandy, You seem to have idiopathic hypercalciuria – I assume your serum calcium is totally normal – and a photosensitivity reaction to moduretic, a combination of hydrochlorothiazide and amiloride. The ideal alternative is to lower diet sodium to below 100 mEq/d (2300 mg) or even lower, which can greatly lower urine calcium. As well, refined sugar will raise urine calcium as will a protein intake above 1 gm/kg/d (PCR in the 24 hour urine panel gives this number). You would be best with the kidney stone diet that puts all this together. Take a look. Regards, Fred Coe


Leave a Reply